Proliferation and Migration of Peripheral Retinal Pigment Epithelial Cells Are Associated with the Upregulation of Wingless-Related Integration and Bone Morphogenetic Protein Signaling in Dark Agouti Rats
نویسندگان
چکیده
OBJECTIVE The aim of this study was to investigate the possible migration of proliferating peripheral retinal pigment epithelial (RPE) cells and their association with differential gene expressions. MATERIALS AND METHODS The RPE layer was obtained from the inner aspect of the eyeball of dark agouti rats (12-13 weeks old) and was mounted on glass slides. The peripheral RPE cell proliferation was evaluated using bromodeoxyuridine immunohistochemistry (n = 10). The cell migration was examined using the Dil tracer technique (n = 40) at the end of weeks 6, 10, 14 and 18. Affymetrix microarray analysis was used to investigate differential gene expressions in peripheral and central RPE cells, which was authenticated by RT-PCR using 4 RPE-specific genes (n = 10). RESULTS In this study, peripheral RPE cells divided and appeared in clusters, but equatorial and central RPE cells rarely divided. The peripheral RPE cells migrated to the central RPE region in a time-dependent manner up to the end of week 14, but not later. The microarray analysis showed the expression of 9,645 out of a total of 35,220 genes studied. Among the 9,645 genes, 573 were differentially expressed (438 were upregulated and 135 were downregulated) in peripheral RPE cells as compared to central RPE cells. Of these 573 genes, 56 were associated with signaling pathways related to the regulation of cell proliferation, including Pax6, TGFβ, BMP and Wnt, and 404 were associated with pathways of cell migration. CONCLUSIONS In this study, peripheral RPE cells divided and migrated to the central region. This process was associated with differential gene expressions in these cells.
منابع مشابه
Regulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملExtremely low frequency-pulsed electromagnetic fields affect proangiogenic-related gene expression in retinal pigment epithelial cells
Objective(s): It is known that extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) influence multiple cellular and molecular processes. Retinal pigment epithelial (RPE) cells have a significant part in the emergence and pathophysiology of several ocular disorders, such as neovascularization. This study assessed the impact of ELF-PEMF on the proangiogenic features of RPE cells. Mate...
متن کاملMorphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملComparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4
Background: Activation of bone morphogenetic protein 4 (BMP4) signaling pathway in embryonic stem (ES) cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, ...
متن کاملتمایز سلول های بنیادی پرتوان به سلول های اپیتلیوم رنگدانه دار شبکیه چشم،راهکاری برای درمان بیماری های تخریب شبکیه
Pluripotent stem cells as the cells with a capacity for self-renewal and differentiation into various specificcell types have been highly regarded in regenerative medicine studies. To repair the eye disease damages, thedifferentiation into retinal pigment epithelial cells of pluripotent stem cells has gained great importance inrecent decades because the inappropriate function of these cells is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 25 شماره
صفحات -
تاریخ انتشار 2016